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The sharp interface which exists in unbounded turbulent shear flows was 
studied using a linear array of twenty hot-wire probes. The probe arrangement 
was such that the location of the interface could be monitored instantaneously. 
The particular flow examined was a two-dimensional turbulent waJl jet. It was 
found that the interface is a highly contorted surface which exhibits a significa,nt 
amount of folding. Quantitative methods for characterizing this behaviour are 
presented, together with pertinent measurements. In  addition, measurements 
of the mean surface area of the interface, and space-time corrrelations of the 
width of the turbulence were obtained. The latter were used to find charac- 
teristic scales and convection velocities of the interface. 

1. Introduction 
I .  1. Nature of the investigation 

A very striking feature of unbounded turbulent shear flows is the very sharp 
demarcation that exists between the turbulent motion and the surrounding 
non-turbulent region. This interface, apparently found in all such flows, entrains 
non-turbulent fluid as it advances into the ambient region. I ts  motion is random, 
both in space and time. Why such a sharp boundary of the turbulent flow should 
exist is not fully understood, although it seems clear that i t  is a result of the 
nonlinear character of the equations that govern turbulent motions. 

This investigation concerned itself with a number of aspects of the turbulent 
interface. The primary aim was to study the topography and motion of the 
interface, to find ways of characterizing its features and to measure some of its 
properties. The approach was experimental, the results serving to motivate 
various concepts, and forming a basis for the analytical description of the inter- 
face. The experimental method centred around an array of hot-wire probes 
which served to locate the interface, thereby providing measures of its statistical 
properties. The particular turbulent flow examined was the two-dimensional 
plane wall jet. 

1.2. Survey of previous work 

The turbulent interface and the flow occurring in its vicinity have been the 
subject of a number of studies since Corrsin (1943) first observed that the output 
of a hot-wire probe had an intermittent character when placed in the outer region 
of a jet flow. Townsend (1948, 1949) introduced the concept of the intermittency 
factor: the fraction of time that the flow a t  any point is turbulent. He measured 
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this quantity in a wake flow and used it to infer properties of the turbulent part 
of the flow. 

The first detailed study of the turbulent interface was by Corrsin & Kistler 
(1955). This classic work shed much light on the nature of the interface and the 
associated entrainment process. The mean position and standard deviation of 
the interface a t  a number of downstream locations were measured in a rough-wall 
boundary layer and round jet, and it was found that these properties grew as 
the characteristic flow width. The probability distribution of the interface loca- 
tion was determined to be closely normal. It was argued on dimensional grounds 
that the propagation speed and thickness of the interface should be determined 
by the viscosity and the mean-square vorticity in the vicinity of the interface. 
Finally, they concluded that the non-turbulent region is a field of irrotational 
motion, so that the interface is in fact a layer across which the vorticity drops 
t o  zero. 

Numerous studies related to the properties of the interface followed this work. 
An analysis of the irrotational motion by Phillips (1955) predicted that the 
intensity of the irrotational velocity fluctuations should fall t o  zero as the fourth 
power of the distance from some point in the flow. This result has been confirmed 
on a number of occasions : most recently by Kovasznay, Kibens & Blackwelder 
(1970) in a boundary layer, and by Wygnanski & Fiedler (1970) in a mixing layer. 
The latter also verified an additional result of Phillips, that the mean-square 
value of the velocity fluctuations normal to the plane of the interface equals the 
sum of those in the transverse directions. 

Some impressive experimental methods for studying the intermittent region 
were devised by Kovasznay et al. (1970). Based on the intermittency function, 
which is unity if the flow at a point is turbulent and zero otherwise, they could 
measure flow properties during turbulent (or non-turbulent) periods alone. Mean 
velocities in the two zones in a boundary layer were measured and found to 
differ by as much as 6 %. Local convection velocities of the interface were measured 
to be about 7 yo less than the free-stream velocity. In  addition they measured 
point averages, whereby a flow variable was sampled only when the interface 
was at some specific location. From these and many other results a very elaborate 
representation of the ‘average’ flow in the vicinity of an ‘average’ turbulent 
bulge was inferred (Blackwelder & Kovasznay 19723). Through space-time 
correlation measurements of velocity and the intermittency function, it was 
established that the shape of the interface is intimately related to the large-scale 
turbulent motions. 

This idea had been proposed earlier by Townsend (1956), who postulated that 
t h e  large eddies of the turbulence contorted the interface thereby controlling the 
rate of entrainment of ambient fluid. Based on visual observation of wake flows 
(Townsend 1966), he suggested that the interface undergoes a growth and decay 
cycle during which rapid entrainment occurs, followed then by a quiescent 
period. Modelling the turbulence as an elastic fluid and the irrotational motion 
as that of an inviscid fluid, a stability analysis showed that the initially planar 
interface was unstable to disturbances below a critical wavenumber. 

The idea that the turbulent flow can exhibit an elastic character was found by 
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Moffatt (1965) in a study of the response of a weak turbulence to a uniform 
shearing motion. He discovered that the mean velocity was governed by a wave 
equation, with a wave speed proportional to the square root of the kinetic 
energy of the weak fluctuations. The non-uniformity of this kinetic energy led 
to a discontinuity of the mean velocity and to a propagation of this discontinuity. 

Townsend (1970) argued that, since the rate of entrainment was set by the 
structural similarity of the flow, the entrainment process would have to adjust 
itself to satisfy this rate. The large differences in entrainment rates between wakes 
and boundary layers suggested that the entrainment processes might differ in 
these flows. The lack of any periodicity in the boundary-layer interface 
(Kovasznay et al. 1970) as compared with the cyclic behaviour of the wake inter- 
face were pointed out as illustrations of these differences. 

Assuming a constant propagation velocity of the interface, Phillips (1972) 
studied the kinematics of surfaces in some simple Aows. It was found that, if the 
convective component of the fluid velocity was less than the propagation velocity, 
discontinuities would develop in the slope of the surface and relatively rapid 
entrainment would result. The converse situation led to a comparatively in- 
active behaviour of the surface and lower entrainment speeds. Phillips then 
went on to interpret the result of Kovasznay et al. (1970) in the light of these 
findings, suggesting that it is the slower moving eddies that are responsible for 
the entrainment of ambient fluid. 

No rigorous explanation for the existence of the interface has yet been given. 
Corrsin & Kistler (1955) proposed that the stretching of vortex lines in the 
presence of a local gradient in vorticity leads to a steepening of this gradient 
since the rate of production of vorticity is proportional to the vorticity present. 
An analysis of the vorticity equation averaged over short times supported this 
argument. Although Moffatt (1965) has criticized this idea, pointing out that 
the rate of destruction of vorticity is also proportional to the vorticity present, 
it must be close to the truth. 

Recently, phenomenological theories describing turbulent flows have included 
the interface (e.g. Nee & Kovasznay 1969; Saffman 1970; Lundgren 1970). The 
aim in these is to impart some structure to the interface, and properties such 
as the mean thickness and propagation velocity are sought. All assume a planar 
interface, which is unstable to large-scale wave disturbances according to an 
analysis of Reynolds (1972). 

The cornerstone of the experimental study of the turbulent interface has been 
the intermittency function mentioned above. This function is constructed from 
the output of a hot-wire probe by appropriate electronic operations. The original 
circuit was constructed by Townsend (1949) and has been elaborated and im- 
proved upon since then, the most recent being a very elegant circuit used by 
Kohan (1968). Modern techniques have included the use of digital computers 
for the analysis of the probe outputs (Coles & Van Atta 1967; Kaplan & Laufer 
1969). Kaplan & Laufer used an array of ten probes to study the intermittent 
region of a turbulent boundary layer. The probes were calibrated, so the system 
was capable of monitoring the location of the interface as well as the motion in 
its neighbourhood. 
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2. Experimental methods 
The major experimental tool used in this study was a linear array of twenty 

hot-wire probes which, coupled with anemometers and detector circuits, served 
to locate the position of the turbulent interface. The probes used were Thermo- 
Systems Model 1276 subminiature probes with tungsten hot-wire sensors. The 
probes were mounted on a brass rod, with spacings of 0.467cm (&in.): see 
figure 1. 

The outputs of the constant-temperature anemometers associated with these 
probes were fed into turbulence (intermittency) detector circuits whose function 
was to produce an output which was ‘on’ (1) if the probe was in a turbulent 
field and ‘off’ ( 0 )  otherwise. These outputs were available for processing to 
determine properties of the interface. The first operation was to add all these 
outputs in a summing amplifier. This sum gives the width of the turbulence 
passing the rake. Another measure was constructed by counting the number of 
consecutive probes that ‘saw’ turbulence, the counting being started from the 
probe closest to the fully turbulent region. This was accomplished by using logic 
circuitry. The final operation (the crossing circuit) was to count the number of 
changes of ‘state ’ that occurred along the rake. Consecutive detector outputs 
were compared in ‘ exclusive or’ gates whose outputs were ‘ on ’ only if the inputs 
differed, i.e. only if an interface crossing was detected. The number of ‘on’ 
signals occurring at  any instant was equal to the number of times that the 
interfme intersected the probe rake. The arrangement is shown schematically 
in figure 1, where for clarity only five channels are included. 

For single-point measurements of the intermittency function a Thermo- 
Systems Model 1274 boundary-layer probe and Model 1010 constant-temperature 
anemometer were used with a turbulence detector circuit much like the ones 
associated with the hot-wire rake. The same type of probe and anemometer 
together with a Thermo-Systems Model 1010 Linearizer were used to measure 
velocities. 

Spatial correlations were determined by analog multiplication followed by an 
integration, while temporal correlations were computed using a P.A.R. Model I00 
Correlator. The mean values of the signals being correlated were removed by 
using blocking capacitors in all cases, the low-frequency cut-off being 0.017 Hz. 
Complete details of all the above procedures are given by Paizis (1972). 

The measurements were undertaken in a two-dimensional wall jet. The wall 
jet is described by Paizis (1972) and Kohan (1968), where gross features of the 
development of the flow are also reported. 

The detection of turbulence is a subjective procedure in which the output of 
the sensor, usually a single hot-wire probe, is suitably processed, e.g. differentiated 
and rectified, and then compared with some preset gate level. If this level is ex- 
ceeded the flow is considered turbulent. The level is usually set on a trial and 
error basis, comparing the gate input to the output and adjusting the gate level 
until the two signals are reasonably matched. 

For the probe rake twenty gate levels must be set independently. If the probes 
were calibrated then this operation would be considerably simplified for the 
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FIGURE 1. (a)  The hot-wire rake and associated electronics. Only five channels are sh 
for clarity. ( b )  Counting circuit. (c) Crossing circuit. 

[own 

gates could be set consistently as some function of the turbulence level. Un- 
fortunately calibration of the probes was not feasible. It is difficult to predict 
what the effect of a mismatch in the gate settings has on the various operations 
described above. Whatever the effect is, the summing amplifier will tend to 
average out the errors that may arise. This is not so for the other two circuits. 
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FIGURE 2. Intermittenoy factor profiles: -, from single-wire 
traverse; 0, from hot-wire rake outputs. 

The counting circuit is sensitive to one particular gate setting at any time (that 
one which detects the first interface crossing), while the crossing circuit is 
effectively a differentiator and so will be more susceptible to errors due to a gate 
mismatch. 

Great care was taken in setting the gate levels. The procedure adopted was as 
follows. The rake was placed in the intermittent region with the downstream dis- 
tance chosen such that the rake spanned approximately four standard deviations 
of the interface position. The gate levels were then set individually and an inter- 
mittency factor profile measured. This was compared with a profile determined 
by a single-wire traverse, then the gate levels were finely readjusted to bring these 
two profiles into close agreement (figure 2). The final test that was made was to 
determine the probability density of the interface. This was done by comparing 
the outputs of two adjacent detector outputs and computing the fraction of time 
that the signals differed, using an ‘exclusive on’ gate. The probability density 
function was measured first by using the full rake and next by traversing with 
the first two probes on the rake. These results are shown in figure 3. The agree- 
ment is very good so the rake can be used with confidence, for it reproduces the 
probability density of the interface, and it is from this function that almost all 
of its statistical properties emerge. 

The next question that arises concerns the finite spacing of the probes. The 
interface is tracked to within one probe spacing by the rake. This is equivalent 
to 0.0446, where 8 is the boundary-layer thickness at the position where the 
measurements were made, and since the range of the interface location is of 
order 6, the interface is located with an accuracy of about 5 %. 

The rake acts as a spatial filter, for no variations in the interface position 
of scale less than the probe spacing will be detected. Using the Corrsin & Kistler 
(1955) dimensional argument and the dissipation measurements of Wygnanski & 
Fiedler (1969), the thickness of the interface is estimated to be of the order of 
0.0018. Thus, there is a range of scales from 0.048 to 0.0028 which will not be 
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FIGURE 3. Probability density of the interface position : 0, from two-wire 

traverse; 0, from hot-wire rake outputs. 

susceptible to measurement. This information is lost anyway, since in the de- 
tection of the interface it is necessary to discard pulses from the detector outputs 
which are less than a certain width (the drop-out problem is discussed by Paizis 
1972). It turns out that this width ( 3 , ~ s )  corresponds to scales of order 0.036. 

3. Geometry of the interface 
3.1. The character of the turbulent interface 

Experimental evidence for the existence of the interface arises primarily from 
two sources. The observation of the intermittent character of the output of a hot- 
wire probe when placed in the flow suggests that there is a sharp distinction 
between the turbulent flow and the ambient fluid, the latter exhibiting only 
large-scale fluctuations in velocity. Visualization of the flow by various means 
indicates that there is a continuous surface which completely surrounds the 
turbulent flow. 

Consequently, it seems reasonable to  describe the interface as a surface in the 
flow field, and it can be conveniently represented by the equation 

y = Y(x,z , t ) ,  

where Y is a smooth positive-valued random function of x, z and t .  Envisioned 
is a flow with the x co-ordinate being the direction of the main flow, and y the 
inhomogeneous direction. It will be assumed throughout that Y(x,  z, t ) ,  andindeed 
all properties of the interface, are homogeneous functions of z and z, and 
stationary in t .  This simplifies the study of its statistical properties enormously. 
To account for the variation of the mean properties with downstream distance 

21 F L M  63 
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FIGURE 4. Oscillograph traces of hot-wire rake outputs. Solid line 
represents the presence of turbulence. 

all such properties will be normalized with suitable combinations of local length 
and velocity scales. 

Recalling the definition of the intermittency function I ($ ,  y, z, t )  as being unity 
when the flow at a point is turbulent and zero otherwise, it can be equated to an 

if and only if Y ( x , z ,  t )  is a single-valued function of its variables. Assuming that 
this is in fact so, it follows that 

r m  
Y = J Idy, 

0 

and Y can be approximated by the finite sum 
N 

i = l  
y = z I(YA (%+I -Y& 

Thus, if a sufficient number of probes, whose outputs were proportional to I(t) ,  
spanned the range of the interface position, their sum would be a good approxima- 
tion to Y(t) .  To get some idea of the interface shape, the hot-wire rake was placed 
in the wall jet flow, 360 slot widths downstream of the jet exit. The detector 
outputs were recorded on a multi-channel oscillograph and a sample trace is 
shown in figure 4. 

There are a number of features of these traces that are worth noting. The 
interface is not a smoothly wrinkled sheet, but rather a highly contorted surface. 
The isolated patches of turbulence are most probably parts of turbulent regions 
located to the side of the rake. In  fact, an isolated turbulent region cannot exist 
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for, if such a region did depart from the bulk of the turbulence, it would still 
be connected to the main turbulent fluid by a thin region of vortical fluid. 

The converse situation, that of the apparent ‘holes’ in the turbulent regions, 
could be indentations in the sides of turbulent bulges or they could be isolated 
regions of non-turbulent fluid. Such a situation is not impossible; indeed Town- 
send (1966, 1970) suggested that engulfing of ambient fluid by turbulence is the 
primary mechanism of entrainment. The trace in figure 4, although it does not 
support such an idea, does not rule it out either. 

The turbulent bulges are not symmetrical. The fronts (leading edges) appear 
to  be steeper than the backs (trailing edges). The backs display a diffuse character, 
there being much folding in these regions, while the fronts are sharp and relatively 
free of these isolated and overhanging regions. 

It is interesting to compare this trace with the recordsof Kaplan & Laufer (1969) 
obtained in the intermittent region of a turbulent boundary layer. Their records 
of the outputs of 10 probes display features similar to those reported here. There 
are also some differences. They report that the leading edges are steeper, and 
while it does appear so, it is not as marked as in the wall jet. Also, the leading edges 
are the regions of ragged character. This is confirmed by the fascinating films of 
a smoke-filled boundary layer reported by Fiedler & Head (1966). The shape of 
the interface in a boundary layer is in a sense similar to that of a jet although the 
relative velocities are opposite, i.e. the boundary layer is a velocity defect flow, 
whereas the jet is one of velocity excess. The dye photographs in a wake by 
Grant (1958) and Townsend (1966) support this idea. 

It is clear then that the interface position is not always a single-valued func- 
tion. Some means of characterizing the extent to which this phenomenon occurs 
seems desirable, and this will be considered next. 

3.2. Measures of folding 
For those flows which contain a fully turbulent region, a formal definition of 
a fold can be given as follows: a fold is a region of turbulent fluid which has 
non-turbulent fluid between it and the fully turbulent region. Thus in figure 4 
the apparently isolated turbulent patches (which are most probably parts of 
turbulent regions located to the side of the rake) are folds; as are the regions above 
the non-turbulent ‘holes ’ and of course the overhanging portions of the turbulent 
bulges. 

To characterize the interface position completely, two additional single-valued 
functions would be needed for each fold that occurs. On a more practical level, 
two functions will be used to describe the interface. The first, H(x,x , t ) ,  is the 
total width of turbulent fluid at (x , z )  at time t. This is easily measured as the 
sum of the turbulence detector outputs, The second function, H * ( x , x , t ) ,  is 
the width of turbulent fluid that is not part of the folds. This is available as the 
output of the counting circuit. 

The difference between these two functions H - H* is the total width of the 
folds, The mean value of this quantity was measured in the wall jet and found 
to be 

H - H” = 0.058, 
21-2 
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where 6 is the boundary-layer thickness. This does not constitute a large propor- 
tion of the total width of the turbulence, which is about 1-58, but is more significant 
when compared with the standard deviation of the interface position, approxi- 
mately 0.36. These values are approximate for as yet we have not established 
measures for these properties. 

The probability distribution of the function H - H* was measured and is 
shown in figure 5. It can be seen that folds occur about 40 % of the time, although 
they are usually of small width; folds with a total width equal to the standard 
deviation occur only with probability less than 0.05. 

The extent to which folding occurs is significant, and, since the mean width 
of the turbulent fluid in the intermittent region is of order 2 c ,  it means that 
10 yo of this fluid will be carried in the folds. Probably most of it will be in regions 
above ‘holes ’. The many-valued character of the interface position is worthy 
of further study, but, since the standard techniques used for studying a random 
function fail when the function is many-valued, a new approach is needed to 
characterize the statistical properties of the interface position. 

3.3. Random multiple-valued functions 

Lumley (1964, 1970) presented a theory for the statistical properties of many- 
valued random functions, and it is this theory that will be followed. It is sufficient 
for our purposes to assume that the interface position Y takes on only a h i t e  
number of values at  any time. Defining an indicator function as 

1 if y <  Y < y+Ay, 
0 otherwise, 

is the probability that Y takes on a value in the interval [y, y + Ay). It will be 

lim T/Ay = BY(y) (1)  
assumed that the limit 

exists. B ,  is the probability density function of Y ,  but its integral 
Ay+O 
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is not unity as is the case for single-valued functions. In  fact, this integral defines 
the expected-valuedness of the function 

The expected-valuedness can be interpreted as the zeroth moment of Y ,  and is 
the expected number of values that the function will take on. 

The moments of Y are defined as 

As far as the single-point statistics of such a function are concerned, one can 
consider a sample of the function, remove any extra values it may take on, and 
add these on at  the end of the sample. The moments of the resulting single-valued 
function can be computed and normalized with the expected-valuedness to 
account for the increase in sample length. This obviously cannot be done for 
multiple-point statistical properties, and although joint probability densities 
can be defined in the same way (Lumley 1964, 1970), their interpretation is 
difficult. 

The probability density function was estimated by measuring T, using a 
two-wire traverse, as described in $2,  and applying (1). The result is shown in 
figure 3. The integral of this curve gives the expected-valuedness as My = 2-35. 
Since folding occurs with probability 0-4, the expected-valuedness in the folding 
region alone would be 4.4. This means that folds will not always occur singly. 

3.4. Statistical properties of the inteTface 

There are a number of possible ways of characterizing the statistical properties 
of the turbulent interface. It is desirable to define a mean position, a standard 
deviation and higher-order moments, and to extend these ideas to multiple-point 
properties, e.g. correlation coefficients. 

(i) The first possibility is of course to use the theory of Lumley outlined in 
9 3.3. This would give true measures of the properties of the interface position, 
within the context of the theory. Measurements would need be done with two 
probes and, as mentioned above, multiple-point properties are not easily in- 
terpreted. 

(ii) Properties measured by the conventional technique, viz. using the inter- 
mittency factor obtained by a single-wire traverse, have the advantage of being 
readily determined. Their significance is not clear when the interface position is 
many-valued, but they certainly do characterize the extent of the turbulent 
field. 

(iii) The last possible measure to be considered is the width of the turbulent 
flow, the function H ( x ,  z ,  t )  discussed earlier. Although only indirectly related to 
the interface position, it is probably more significant physically: it is this function 
which appears in the study of entrainment rates. Further, it  is available as an 
analog signal (using the hot-wire rake), and its extension to multiple-point 
measurements is straightforward. 
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Some formal relationships between the three approaches can be derived. The 
probability density BY(y)  is related to the intermittency function by 

so two-point statistics of I(y) are sufficient to determine B,(y). An inverse 
relationship does not exist since I (y )  is not determined by Y ,  i.e. specification 
of Y does not establish whether the flow is turbulent at  any point. Of course, I 
could be redefined as being unity a t  y if Y takes on an even number of values less 
than y. Then some relationship might exist, but it is not obvious just what it 
should be. 

The width of the turbulent fluid H is directly related to I by 

If = JrnI(Y)dY, 0 

so a complete statistical description of I is needed (e.g. the characteristic func- 
tional), to determine the distribution of H .  The mean values are equal, however, 
for 

No simple relationship exists for the standard deviations. In  fact, 

and 

where the subscripts H and I refer to methods (iii) and (ii), respectively. 
Probability distributions for the three approaches can be represented as 

(i) P(Y < y) = lov p) dy, 

(ii) P(YI < y) = 1 -I(y), 
(iii) P(H < y). 

It should be stressed that the function YI has no physical significance if the 
interface position Y is multiple-valued. These three distributions have been 
calculated for the wall jet and are presented in figure 6. The similarity between 
P( Y < y) and 1 -1 is striking and suggests that use of the intermittency factor 
profile as a representation of the probability distribution of the interface position 
is reasonable. It is not surprising that P(H < y) differs from the other two, for 
in constructing H ( x ,  z, t ) ,  the Y function is compressed, valleys (regions of small 
Y )  being filled with folds, thus leading to a smaller standard deviation. The 
mean values and standard deviations have been determined from these distribu- 
tions, and are presented in table 1. 
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Mean Standard 
position deviation 

1-53 
1.55 
1.54 

TABLE 1 

0-303 
0-280 
0-239 

3.5. Xurface area of the interface 

An important property of the interface which arises in connexion with the 
entrainment process is the surface area of the interface. For the single-valued 
case the surface area per unit projected area is equal to 

and its mean value is 

where By, is the probability density of the slope of the interface. Two problems 
arise with this formula: By,  is inaccessible to direct measurement, and the 
equation holds only for single-valued Y(x ,  2). A rather extraordinary formula 
f o r d  has been derived by Corrsin & Phillips (1961), which overcomes both of 
these difficulties. It relates the mean surface area to the number of intersections 
made by lines drawn through the surface at different angles to the x, z plane. 

Consider a straight line drawn through the point (x, 0, zl) at an angle a to 
the x, x plane, and whose projection onto the x, x plane makes an angle 8 with the 
z axis (figure 7).  Let M(a,r9) be the mean of the number of intersections this 
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FIUWRE 7. The direction for the interface crossing count. 

line makes with the surface. Then Corrsin & Phillips find that the mean area 
of the surface per unit projected area is given by -i- 

Further, consider the intersection of the surface with a plane which is per- 
pendicular to the x, z plane and contains the straight line (a, 8). Then the mean 
contour length of this intersection per unit projected length is 

The quantity M(a,  8) is measurable. In  fact, if the rake is positioned in the 
direction (a, 8), the mean output of the crossing circuit would be equal to M(a ,  6). 
The rake, when tilted, was not long enough to span the interface, so traverses in 
they direction were necessary to compute M ( a ,  8). This was done for 8 = 90" and 
a = 15", 30°, 45", 60" and 90"; and for 0 = 0" and a = 0", 30", 60" and 90". 

It was found that the number of crossings K(8)  per unit length of the rake 
was essentially independent of a and with an error of less than 7 yo, 

for 8 = O", K(8)  = 2.23 and 8 = go", K(8)  = 2.36. Since measurements at  other 
values of 8 could not be taken, it was decided to assume that K(8) was a con- 
stant, independent of 8 and equal to 2.30. Consequently, the surface area per unit 
projected areais given by& = 7.2. The mean contour lengths in the x, y (0 = 90") 
and z ,  y (6 = 0") planes are LZZ = 3.7 and 

These extremely large values are a result of the large degree of folding of the 
interface. By dividing these numbers by the expected-valuedness, the contour 
lengths and surface area per 'value' of the interface are obtained. These give 
a measure of the contortion of the interface not due to folding, and are& = 3.1, 
2Zz = 1-6, 92 = 1.5. The above equations for the contour length and surface 
area can be derived using the theory for many-valued random functions outlined 
in 53.3 (Lumley 1964). 

= 3.5. 

The formula of Corrsin & Phillips is incorrect. 



Topography and motion of the turbulent interface 329 

4. Correlation measurements 

An important statistical property of the interface is its space-time correlation 
coefficient, for this quantity provides a measure of the spatial structure of the 
interface and its development with time. A direct measurement of this property 
would require two hot-wire rakes, but, quite apart from the complexities of 
operating two rakes, the interference of the flow by the upstream rake would 
probably render this approach unfeasible. An alternative method was devised 
whereby space-time correlations could be constructed’ using the rake and a single 
probe. 

The property whose space-time correlation will be sought is the width of the 
turbulent flow H(x ,  z, t ) .  Then 

4.1. Correlations of the interface position 

H(x ,  2, t )  = I @ ,  Y, z , t )  dY, 
SOrn 

and multiplying this by H(x’, z’, t’) and time averaging, 

H(x’z‘, t’) H(x ,  2, t )  = H(x’, z’, t’) I(x, y, 2, t )  dy = H(x‘, z’, t‘) I(x, y, 2, t )  dy. 
s o -  

The space-time covariance of H(x ,  z ,  t )  can thus be computed from measurements 

of XU. Letting h = H - & ,  
the Correlation coefficient is 

where the prime refers to the root-mean-square value. #(g, 5 , ~ )  will be referred 
t o  as the space-time correlation of the interface position with the understanding 
that if Y(x ,  z, t )  is many valued, then it is the correlation of the width of the 
turbulent fluid. 

The rake was placed in the flow a t  x/d = 360 and a single probe with its related 
anemometer and detector circuit positioned upstream. This probe was traversed 
in the y direction, IE? being computed a t  each y position. The rake was kept a t  
the same place throughout, so these measurements were unconventional in the 
sense that the upstream probe was moved rather than the downstream probe. 
Since h’ was not known for the single probe position, the standard deviation as 
computed from the intermittency factor profile was used to account for the 
growth of the length scales with x. The boundary-layer width and maximum 
mean velocity at the rake position were used to normalize $,c and 7. 

To measure correlations with longitudinal separations, the single probe was 
displaced slightly in the z direction to minimize interference. An extrapolation of 
the results for a number of < separations showed that the effect of this displace- 
ment was negligible. In  addition, the autocorrelation measurements of h(t)  
showed that the upstream probe had no effect on the rake output. Spatial corre- 
lations with separations in the longitudinal and transverse 6 directions are 
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FIGURE 8. Spatial correlations of the interface position. 0, longitudinal correlation with 
finite separation in s direction ({,,/S = 0.03) #(&) ; 0, transrerse correlation #([) ; - - -, 
sin (+n3). 
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FIGURE 9. Space-time correlation of the interface position, X(6, 7 ) .  

presented in figure 8. A characteristic length of the interface L can be defined 
as the separation a t  which the correlation falls to 0.2. The choice of this value 
is really arbitrary, but it does avoid the need to rely on the less accurate measure- 
ments at the lower correlation values. Thus, Z(L,O) = 0.2. On this basis, 
Lt = 1-1, L - 0.8. It is worth noting that the measured correlations are positive 
for all separations. Our measurements at  large separations, not shown in figure 3, 
confirmed this result. This is in contrast to the correlations of the interface posi- 
tion in a boundary-layer flow reported by Townsend (1970). These correlations 
were computed from films made by Fiedler & Head (1966), and show negative 
correlations of up to -0.4. It may be that the very short averaging times 
necessarily used in computing these correlations are the cause of such large 
negative values (as noted by Townsend). 

6 :  
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The space-time correlations of h(x,  x ,  t )  shown in figure 9 exhibit a fair amount 
of scatter. This was due to the low time constant (20s) of the averager in the 
PAR correlator used for these measurements. The space-time correlations can 
be characterized by two parameters: the distance D at which the envelope of 
the correlation curves drops to 0-2, and the time delay T at which this occurs. 
Thus a Z / a [ ( r > ,  T )  = 0 ,  Z ( D ,  T) = 0-2. For the results presented in figure 10, 

The three characteristic parameters can be interpreted as follows. If there 
exists a dominant shape, i.e. a particular shape of the interface which makes the 
most significant contribution to the correlation, then it will have a size of order L 
and a lifetime of order T, during which time it will have moved a distance D. 
Of course, there is no particular reason why such a shape should exist; how- 
ever, the concept is useful even if only to characterize the two-point statistics 
of the interface. Moreover, the visualization of free turbulent flows does hint 
at  the existence of a preferred shape. Further support is provided by noting 
that the characteristic length of the correlation curves is approximately 
constant. This suggests that the characteristic shape maintains its form 
throughout its lifetime. 

D = 1*9S, T = 7.4S/DnL. 

4.2. The characteristic shape of the interface 

The suggestion that there may be a particular shape which characterizes the 
interface will be considered. Assuming for the moment that such a shape does 
in fact exist, it would be desirable to predict it. Properties that it should yield 
are the correlation functions of the interface, and the following problem is 
posed: given the space-time correlation X([,  Q 7), find a function g([, g, 7 )  which, 
when distributed randomly in space and time, will yield as its space-time correla- 
tion function Z. This problem spparently first arose in the study of shot noise 
(Rice 1944, 1945). The approach was applied by Townsend (1956) and Grant 
(1958) to predict, from velocity correlations, a shape for the large eddies of 
a turbulent motion by a trial and error method. Lumley (1964, 1970) presented 
formal methods for extracting this shape from the correlations, and it is his 
theory that will be used here. The correlation functions are homogeneous so the 
problem is greatly simplified. This approach has its limitations, for no anti- 
symmetrical properties of the interface can be found. 

The function h(x, x ,  t )  can be expressed as 

h(x, 2, t )  = g(x - d, z - z’, t - t ’ )  db(x’, z’, t ’ ) ,  s 
where g is a deterministic function, db is random and 

dx dx dt if (x, x ,  t )  = (x’, x’,  t ’ ) ,  

0 otherwise. 
db(x,  x ,  t )  db(x‘, z’, t ’ )  = 

This is a decomposition of the interface into characteristic shapes g(5, c, T) 
occurring at  random, uncorrelated locations and times. The Fourier-Stieltjes 
representation is a special case, although undesirable for it  leads to a 
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function g which is infinite in extent. It is easily shown that, since h(x, z, t )  is 
homogeneous, 

c 

This equation must be solved for g(E,c, 7); of course, the solution will not be 
unique, e.g. if g is a solution so is - g. If the Fourier transform is taken as 

F[*I = jm. 6 7 7 )  exp {vclt + u+ W7))@3@7, 

then, using Parseval’s relation for the Fourier transform of a convolution integral 

P[ZI = P[gl P*[gl, 

where the asterisk denotes the complex conjugate. The function g can be chosen 
such that 

F[g] = ( F [ Z ] ) 4 ,  i.e. g = 3”-1[(F[%])+]. 

As an example consider the simple case where 

2([) = exp { - E2/h2}. 
Then 

S [ Z ]  = Ant exp { - &h2k2,) and g ( [ )  = (4/7r)t exp { - 2[2/h2). 

The characteristic shape has the same form as the correlation function but has 
a more rapid decay. 

To determine the characteristic shape for any interface a complete description 
of the space-time correlation is required. Since our results are insufficient, we 
must be satisfied with something less than the complete shape. A function g(5) 
will be sought which, when distributed along the x axis at random uncorrelated 
positions, will have for its correlation function Z ( 6 ) .  The same will be done for 
the transverse direction. Guided by the simple example above, we can expect 
the characteristic shape to be similar in shape to the correlation function, but 
narrower. To the spatial correlations in figure 8, expressions of the form 

3 

n=O 
exp { - at2} I; b,f;2n 

were fitted by a least-squares method. These expressions were then used to 
calculate g by digital computation, and the results are shown in figure 10. As 
shown they would represent a characteristic ‘bulge ’ of the interface; inverted 
they would typify a ‘valley’. It is necessary to question the meaning of this 
characteristic shape of the interface. What is its significance? If the interface 
were frozen at  any instant and observed, would this shape be apparent? The 
density of the distribution of shapes (i.e. the mean number occurring per unit 
length) is arbitrary in the sense that any density will yield the same correlation 
function, If this density is low and the shapes are spaced far apart, then they 
should be observable, if they exist. If spaced so close that they interact, then 
they might not be apparent. The extent of g ( t )  is about 1-58, so this would 
represent the closest spacing possible before the shapes interact. Consequently, 
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$18 

FIGURE 10. Characteristic shapes for the interface. -, longitudinal shape g ( 6 )  ; 
-.- , transverse shape g ( 5 ) ;  - - - - -, A?(E); -.-.-. , &“t;). 

if there is to be no interaction between characteristic shapes, the mean number of 
crossings of theinterface per unit length should be less thanM, = 211.58 = 1.38-1. 
However, our measurements indicate that M, = 38-l) so such a large spacing is 
unlikely. To resolve this question, some detailed visualization of the flow would 
be necessary. It is on this basis that Townsend (1966) has proposed a periodic 
type of structure for the interface in a wake flow. Such periodicities have not 
appeared in any correlation measurements in any flow. It is important t o  nobe 
that the existence of a characteristic shape in no way implies a periodic structure. 

4.3. Convection velocity of the interface 

A convection velocity of the interface in the x direction is conveniently defined as 

This definition can be motivated a number of ways. If the interface is represented 
as 

then (Phillips 1972) 

Longuet-Higgins (1956,1957) showed that (2)  gives the velocity of intersections 
of the interface with a line parallel to the x axis, and this type of method has 
been used by Kovasznay et al. (1970) to estimate convection velocities. For the 
special case where Y ( x , z , t )  is a Gaussian variable whose derivatives are also 
Gaussian, the mean value of the convection velocity is 

x = X(Y, 2 ,  t ) ,  

@; = axp. 

and is independent of the location of the line drawn through the surface (Longuet- 
Higgins 1956, 1957). In general, no simple form for the mean convection velocity 
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can be derived. This is unfortunate, for it is desirable to have a convection velocity 
that can be computed from the space-time correlations of h(x, z, t ) .  Consequently, 
(3) will be taken as the definition of the convection velocity, and it will be shown 
that it is derivable from the space-time correlation of h(x, z, t ) .  

A number of convection velocities can be defined from the space-time correla- 
tions. For a given probe spacing the ratio of this spacing to the time delay 
required for a maximum in the correlation curve defines one convection velocity, 
'3; say. This is given by the slope of the locus of all points in the &-, r plane at  
which a&f/ar = 0. So 

% -  ""I" a+ a g a f  

and, since %t will in general vary with 5 or r ,  its value for ( = r = 0 will be used. 
An alternative procedure is to compute for a given time delay the separation 

required to achieve maximum correlation. The convection velocity Er is defined 
as the ratio of this probe separation to the given time delay. This latter definition 
seems better for one prefers to treat the complete flow field a t  specific instances 
rather than time records a t  particular points. Unfortunately, it  is the former that 
is more easily determined. 

The convection velocity gr can be found from the envelope of the curves in 
figure 9, and because it is characterized by the condition a Z ' / a t  = 0, it is given by 

vT=-- - ""Iazs star a p  * 
The two convection velocities just defined are analogous to the celerities of 
Favre, Gaviglio & Dumas (1967). 'iR, also varies with 6 and T, and the value 
corresponding to = r = 0 will be used. It is easily shown that, if Y ( x ,  z ,  t )  is a 
homogeneous function of x, then 

and 

The convection velocities were estimated from the curves in figure 9, and it was 
found that 

qt = 0.30am, Vr = O*19~m.  (41, (5) 

The mean velocity varies from approximately 0.32Dm to 0.05cm over the in- 
termittent region and is equal to 0.15gm at P. 

An alternative method was used to estimate a convection velocity. The rake 
was aligned parallel t o  the x axis at  7, the mean output of the crossing circuit 
was measured, and the average number of interface crossings per unit length 
was calculated. Next, the average number of crossings per unit time was measured 
using a single probe. This is twice the interface crossing rate. The two values 
obtained were, respectively, 

M, = 3.0~?-~,  Mt = 0*450m/6. ( 6 )  
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Vm = Mt/M, = 0.15Um. 

335 

The ratio of these two numbers defines a convection velocity 

(7) 

This method is much the same as that used by Kovasznay et al. (1970). It should 
be emphasized that convection velocities determined in this way are theoretically 
unsound. They are determined by essentially timing the passage of the interface 
across a fixed distance d,  between two probes. Let the time of passage for the 
i th crossing of the interface be A t j .  Then the measured convection velocity 
averaged over N crossings is 

VM = Nd 2 Ati. I” i=l 

However, the convection velocity for the i th  crossing is 

qi = d/At i ,  

and the mean convection velocity for N crossings is 

N N 

i= l  i=l  
V = N-1 C %?< = N-ld ( l / A t i ) .  

Now it is easily shown from the Cauchy-Schwarz inequality that 

therefore gJf < v, (8) 

so this estimate of the convection velocity will be too low. This is indeed so for 
the present measurements (cf. (6) and (7)). 

Using the interface crossing technique, Kovasznay et a l .  found that, for the 
turbulent boundary layer, the overall convection velocity was 0.93nm, where 
Urn is the free-stream velocity. The convection velocity estimated from their 
space-time correlations of the intermittency function is 0.96umt (table 2).  
Therefore, for these experiments, the difference in the values obtained by the 
two methods are within the accuracy of the data and are not inconsistent with 
the prediction of (8). 

4.4 .  The  slope of the interface 

I n  the light of the discussion of the many-valuedness of the interface position, 
the slope will also be many-valued and will a t  times be infinite. It is reasonable 
to assume that the turbulent flow is a simply-connected region, so the interface 
does not touch itself a t  any time. Consequently, the expected-valuedness of the 
slope will be the same as for the interface position. 

The theory of Lumley could be applied to the study of the statistical properties 
of the interface slope. However, no direct measure of the slopes of the interface 
was available so this approach would not be fruitful. Properties of the derivatives 
of the width of the turbulence H ( x ,  x ,  t )  can be found, and these will be considered, 
with the knowledge that the results will apply to the interface position, if it is 
single-valued. 

t Blackwelder has estimated 0.94 8,. 
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FIGURE 11. Autocorrelation of the interface position. 
-, H(7); - - - -, Sin (&my). 

Since h(t) was available at  the output of the summing amplifier, it was hoped 
that by simply differentiating this output the r.m.5. value of h(t) could be found. 
Unfortunately, since h was not a continuous signal, differentiating the signal 
produced spikes, which could not be filtered out without significantly affecting 
the signal. From the autocorrelation of h(t) (figure ll), a microscale ,u can be 
determined. This is related to the time rate of change of h by 

(ahlat)’ = 42h‘/p, 

where the primes refer to the r.m.s. value. TO relate the time derivative of h 
to its spatial derivative a convection velocity is needed. Which to use follows 
easily from 

The value of ,u was estimated from the autocorrelation curve as p = 2-24&/um. 
Using the value 2.4 for h‘ (Q3.4), (ah/at)’ = 0*15D,, and using (5) and (6) for 
the convection velocities, (ahlax)’ = 0.64. Prom the spatial correlation %([) a 
microscale A, can be estimated as A, = 0.45, and this leads to an r.m.s. slope of 
(ahlax)’ = 0.75. The agreement is satisfactory. 

The spatial derivative of the width of the turbulent flow could be used as an 
estimate of the slope of the surface; however, owing to folding, the estimate will 
always be too low. Some idea of the surface slope can be obtained from the inter- 
face crossing rate M,. Using the Rice-Kac zero-crossing formula for Gaussian 
variables (Rice 1944, 1945), 

Using the value (6) forlM, and c = 0.38, (aY/ax)‘ = 2.8. Dividing by the expected- 
valuedness to give a slope per value of Y ,  (aY/ax)’ = 1.2.  This is twice the value 
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FIGURE 12. Spatial correlations of the intermittency function. 0, longitudinal correlattion 
with finite separation in z direction ([,JS = 0.03) Y(5); 0, transverse correlation #([). 

obtained for the spatial derivative of h and it is a bit surprising that it is not 
greater, since the slope of Y must be infinite every time a fold occurs. In  fact, 
the r.m.s. value of the slope of Y could be infinite. Corrsin & Phillips (1961) 
derived a formula for the contour length of a single-valued Gaussian variable. 
The formula is of the form 

where f is a rather complicated function. Using the r.m.s. slope per value of 1-2 
yields a contour length of 1.5, which compares favourably with that reported 
in $3.5.  

4.5. Space-time correlations of the intermittency function 

The space-time correlations of the intermittency function I(x, y, z, t )  were also 
measured. The idea was to see how much information about the interface could 
be gained with just these measurements, for they are far more easily obtained 
than the correlations of the interface position. 

The probe in the rake which was closest to the mean position of the interface 
was used as the fixed probe and the movable probe was the same as that used 
in the %? measurements. This probe was kept close to  the mean position of the 
interface for all measurements. The correlation coefficient measured was 

2 =f(4, 

i ( x  + g, F, z + 6, t + 7 )  i ( x ,  P, 2, t )  
y(g’ ” 7, = i‘(X + 5, 2 + 6, t -I- 7)i’(Z, P, Z, t) ’ 

where i = I - ] .  
It is easily shown that - -  - 

i’2 = i2 = I(i-1). 

Spatial correlations 3(6) and 9(6) are shown in figure i2 .  Here the effect of 
the transverse displacement of the probe was significant. The space-time correla- 
tions are presented in figure 13. There is some simiIarity in these sets of curves 
and the correlations of interface position; however, the latter are substantially 

22 P L M  63 
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FIGURE 13. Space-time corrolations of the intermittency function 4(5,7). 

Wall jet Boundary layer? ------- 7 r - b  

1.1 0.83 1.1 1.05 0.5 0.7 
- - 0.31 - 0.8 0.66 

1.4 1.3 - 1.6 - 
1.9 1.4 1.4 3.0 8.7 10.0 
7.4 6.0 6.5 4.8 9.0 10.5 
0.30 0.27 - 0.63 0.96 0.92 

v#Jm 0-19 0.16 - 0-48 0-96 0.92 

A? 4 Rll( Rl,(8) 9 Rll(Y) 

LgP 
LCl8 
L r k  

Taw$ 
e'S/v_m 

- 

D/6 

t Results of Blackwelder & Kovasznay (1 972 b) and Kovasznay et al. (1 970). 

TABLE 2. Properties of space-time correlation functions. 

broader than those of the intermittency function. This is reflected in the smaller 
scales derived from the intermittency function (table 2). Also tabulated are the 
convection velocities, computed in the same way as for the interface position. 
The convection velocity VT is approximately equal to the mean velocity at  7. 

If it is assumed that h(x,z,t) is a Gaussian variable, then its correlation is 
uniquely related to that of I(x, y ,  z, t )  by (Corrsin & Kistler 1955; Papoulis 1965) 

2= sin (in$). (9) 

This formula was applied to the longitudinal, transverse and autocorrelations 
of the intermittency function and the results are comparedwith the corresponding 
correlations of interface position in figures 8 and 12. The agreement is good, the 
worst case being the longitudinal correlations: this may be due to the probe inter- 
ference. Without knowledge of the correlations of h, (9) represents a very good 
estimate of if, certainly better than using 9 alone. 
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FIGURE 14. Spatial correlations of velocity at 6. 0, longitudinal correlation 

R11(5; 6) ; 0, transverse correlation R,,(c; 8) .  

4.6.  The  turbulent motion i n  the intermittent region 

The measurements of Kovasznay et al. (1970) (also Blackwelder & Kovasznay 
1972b) confirmed the widely held view that the behaviour of the interface should 
be intimately related to the large-scale turbulent motion occurring in the 
neighbourhood of the interface. A similar, although less detailed, c o n h a t i o n  
for the wall jet was made by measurements of correlations of the longitudinal 
components of velocity 

To characterize the fully turbulent region, spatial correlations with longitudinal 
and transverse separations, and space-time correlations with longitudinal separa- 
tions were measured with both probes maintained at one boundary-layer thick- 
ness from the wall. These measurements were repeated with the probes maintained 
a t  yo = P to characterize the flow in the intermittent region. The results are 
collected in figures 14-17. The longitudinal correlations of u are almost identical 
a t  the two locations while the transverse correlations differ markedly, the familiar 
negative portion of the correlation at 6 being almost non-existent a t  r. Also, the 
scale of the transverse motion is much smaller at 6. 

The space-time correlations at 6 and F differ; the latter resemble those of A 
and I ,  while the former show a quite rapid decay. The characteristic parameters 
are assembled in table 2. The length scales L, are not shown for the transverse 
separations. These correlations differ in shape from those of h and I ,  so the length 
scales would not have the same significance. Also presented are the convection 
velocities for the correlations at 6 (those a t  H had too much scatter to make 

22-2 
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FIGURE 15. Spatial correlations of velocity a t  y.  0, longitudinal 

correlation B,,(E; P); 0, transverse correhtion B ~ ~ ( C ;  P). 
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FIGURE 16. Space-time correlations of velocity at 8, Rl1& T ;  8 ) .  

quantitative estimates). These were computed in the manner described pre- 
viously and compare rather favourably with the convection velocities measured 
in a round jet by Wygnanski & Fiedler (1969). The convection velocity V7 is 
almost equal to the local mean velocity. 

Finally, spatial correlations with separation in the inhomogeneous y direction 
were measured with the fixed probe a t  7. A displacement of the movable probe 
in the x direction was necessary, to traverse past the fixed probe. These measure- 
ments are shown in figure 18, together with the intermittency factor profile. The 
extent of correlation is almost identical to the range of the interface position, 
again showing up this intimate connexion between the turbulent motion and the 
interface. 
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FIGURE 17. Space-time correlations of velocity at 7, Rll([, 7 ;  P). 
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FIGURE 18. Spatial correlations of velocity. 0, correlation - with finite separation 
in z direction (Q/& = 0.05) Rll(v; Y); -, 1. 

The turbulent velocity field of a wall jet has been the subject of detailed 
studies by Hodgson (1972, private communication) and Mathieu (1971). The 
few correlation measurements presented here are in reasonable agreement with 
their results. 

4.7. Comparison with the turbulent boundary layer 
Tlie results presented in this section can be taken as representative of jet flows, 
and it is worth comparing them with the results of Blackwelder & Kovasznay 
(1972b) and Kovasznay et al. (1970) for the boundary layer with zero pressure 
gradient. They measured space-time correlations of I ,  u, v and uv, and found that 
they persisted over very large distances downstream. Equivalent scales have been 
calculated for their correlations of u and I ,  and are included in table 1. The length 
scales of the spatial correlations for the boundary layer are appreciably smaller 
than those for the wall jet and the ratio of the scales shows that the shape of the 
ir tterface in the boundary layer is slightly more elongated in the x direction. 
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The persistence of the space-time correlations for the boundary layer is 
primarily a result of the large convection velocities, since the ratio of the decay 
times T is 1.5, as compared with the ratio of distances D, which is about 6. Thus, 
the lifetimes of the characteristic shapes are of the same order of magnitude in 
the two flows. 

5.  Conclusions 
A study of the geometrical properties of the interface in a turbulent wall jet 

using a multiple array of turbulence detector probes reveals a highly contorted 
interface shape, which is distinctly three-dimensional. The contortion is so great 
that the interface position, expressed as the height of the interface from the wall, 
is multiple-valued for as much as 4 0 %  of the time. However, the quantity of 
turbulent fluid carried in the folded regions is small, about I0 % of the turbulent 
fluid in the intermittent region. 

Using a theory of Lumley (1964, 1970) to study the statistical properties of 
such surfaces, the degree of contortion can be characterized by the expected- 
valuedness, which gives the average number of values taken on by the interface 
position. This was found to be 2.35 (for single-valued functions it is of course 
unity). The most significant aspect of this many-valued nature of the int,erface 
is that it leads to extremely large surface areas. This property was measured in 
the wall jet flow using a formula of Corrsin 81 Phillips (1961), and it was found 
that the ratio of surface area to projected area was 7.2. Thus, in dealing with 
properties that involve the slope of the interface, it is important to take note of 
this feature of the interface. Studies of other shear flows suggest that t,his 
phenomenon is a property of all interfaces. 

The close agreement between the probability distribution of the interface and 
the intermittency factor profile allows one to overlook the many-valued character 
of the interface when dealing with global features of the interface. This is no 
doubt due to the fact that so little turbulence is carried by the folded regions. 
Measurements of space and space-time correlations of the total width of the 
turbulent fluid have been performed, and estimates of scales of sizes and decay 
times based on these results have been made. It is concluded that a typical 
shape of the interface has a length in the longitudinal direction approximately 
equal to the boundary-layer width 8, and a transverse width of 0.86. Taking the 
height of this shape as the standard deviation, CT = 0.36, the aspect ratio is 0.3. 
In  the light of the above discussion, this cannot be related to the slope of the 
interface. The decay time of this shape is 7-48/uvL, and the distance travelled 
during this time is 28. This is in contrast to the situation in a boundary layer 
where (Kovasznay et al. 1970) the decay times are of the same order, but owing 
to the larger velocity in the vicinity of the interface, the distance traversed by 
the typical shape is about ten boundary-layer thicknesses. Following a method 
of Lumley (1964, 1970), a characteristic shape of the interface has been formally 
deduced from the spatial correlations. This has much the same properties although 
it has a smaller height than given above. The question of a convection velocity 
of the interface has been examined, and a suitable convection velocity has been 
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defined, which can be calculated from the space-time correlations. This yields 
a value close to the mean velocity at  the mean position of the interface. 
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